Please enable JavaScript to view the comments powered by Disqus. Understanding What is Docker and its Components

 

 

 

 

Understanding What is Docker and its Components

NovelVista
NovelVista

Last updated 10/06/2021


Understanding What is Docker and its Components

Nowadays each organization is turning into a software company, and there is a lot of stuff going around causing software development to happen at record speeds.

In the present cloud market, there are numerous DevOps instruments and approaches that are arising each day. Individuals have such countless alternatives to look over that competition has arrived at its pinnacle, which in turn has squeezed these software firms to constantly deliver products and services even better than their competitors.

As the cloud approach is strongly acquiring prominence, numerous organizations are beginning to accept cloud practices and ideas like containerization, which means DevOps tools like Docker are sought after. In this article, we will understand what exactly is Docker and see a few concepts related to Docker that are helpful for developers and architects.

What is Docker

Docker is an open platform for developing, shipping, and running applications. Docker enables you to separate your applications from your infrastructure so you can deliver software quickly. With Docker, you can manage your infrastructure in the same ways you manage your applications. By taking advantage of Docker’s methodologies for shipping, testing, and deploying code quickly, you can significantly reduce the delay between writing code and running it in production.

The Docker platform

Docker provides the ability to package and run an application in a loosely isolated environment called a container. The isolation and security allow you to run many containers simultaneously on a given host. Containers are lightweight and contain everything needed to run the application, so you do not need to rely on what is currently installed on the host. You can easily share containers while you work, and be sure that everyone you share with gets the same container that works in the same way.

Docker provides tooling and a platform to manage the lifecycle of your containers:

  • Develop your application and its supporting components using containers.
  • The container becomes the unit for distributing and testing your application.
  • When you’re ready, deploy your application into your production environment, as a container or an orchestrated service. This works the same whether your production environment is a local data center, a cloud provider, or a hybrid of the two.

Docker Uses

Fast, consistent delivery of your applications

Docker streamlines the development lifecycle by allowing developers to work in standardized environments using local containers which provide your applications and services. Containers are great for continuous integration and continuous delivery (CI/CD) workflows.

Consider the following example scenario:

  • Your developers write code locally and share their work with their colleagues using Docker containers.
  • They use Docker to push their applications into a test environment and execute automated and manual tests.
  • When developers find bugs, they can fix them in the development environment and redeploy them to the test environment for testing and validation.
  • When testing is complete, getting the fix to the customer is as simple as pushing the updated image to the production environment.

Responsive deployment and scaling

Docker’s container-based platform allows for highly portable workloads. Docker containers can run on a developer’s local laptop, on physical or virtual machines in a data center, on cloud providers, or in a mixture of environments.

Docker’s portability and lightweight nature also make it easy to dynamically manage workloads, scaling up or tearing down applications and services as business needs dictate, in near real-time.

Running more workloads on the same hardware

Docker is lightweight and fast. It provides a viable, cost-effective alternative to hypervisor-based virtual machines, so you can use more of your compute capacity to achieve your business goals. Docker is perfect for high-density environments and for small and medium deployments where you need to do more with fewer resources.

Docker architecture

Docker uses a client-server architecture. The Docker client talks to the Docker daemon, which does the heavy lifting of building, running, and distributing your Docker containers. The Docker client and daemon can run on the same system, or you can connect a Docker client to a remote Docker daemon. The Docker client and daemon communicate using a REST API, over UNIX sockets, or a network interface. Another Docker client is Docker Compose, which lets you work with applications consisting of a set of containers.
Docker Architecture Diagram

The Docker daemon

The Docker daemon (dockerd) listens for Docker API requests and manages Docker objects such as images, containers, networks, and volumes. A daemon can also communicate with other daemons to manage Docker services.

The Docker client

The Docker client (docker) is the primary way that many Docker users interact with Docker. When you use commands such as docker run, the client sends these commands to dockerd, which carries them out. The docker command uses the Docker API. The Docker client can communicate with more than one daemon.

Docker registries

A Docker registry stores Docker images. Docker Hub is a public registry that anyone can use, and Docker is configured to look for images on Docker Hub by default. You can even run your private registry.

When you use the docker pull or docker run commands, the required images are pulled from your configured registry. When you use the docker push command, your image is pushed to your configured registry.

Docker objects

When you use Docker, you are creating and using images, containers, networks, volumes, plugins, and other objects. This section is a brief overview of some of those objects.

IMAGES

An image is a read-only template with instructions for creating a Docker container. Often, an image is based on another image, with some additional customization. For example, you may build an image that is based on the ubuntu image but installs the Apache web server and your application, as well as the configuration details needed to make your application run.

You might create your images or you might only use those created by others and published in a registry. To build your image, you create a Dockerfile with a simple syntax for defining the steps needed to create the image and run it. Each instruction in a Dockerfile creates a layer in the image. When you change the Dockerfile and rebuild the image, only those layers which have changed are rebuilt. This is part of what makes images so lightweight, small, and fast when compared to other virtualization technologies.

CONTAINERS

A container is a runnable instance of an image. You can create, start, stop, move, or delete a container using the Docker API or CLI. You can connect a container to one or more networks, attach storage to it, or even create a new image based on its current state.

By default, a container is relatively well isolated from other containers and its host machine. You can control how isolated a container’s network, storage, or other underlying subsystems are from other containers or the host machine.

A container is defined by its image as well as any configuration options you provide to it when you create or start it. When a container is removed, any changes to its state that are not stored in persistent storage disappear.

Example docker run command

The following command runs an Ubuntu container, attaches interactively to your local command-line session, and runs /bin/bash.

$ docker run -i -t ubuntu /bin/bash

When you run this command, the following happens (assuming you are using the default registry configuration):

  1. If you do not have the ubuntu image locally, Docker pulls it from your configured registry, as though you had run docker pull ubuntu manually.
  2. Docker creates a new container, as though you had run a docker container create command manually.
  3. Docker allocates a read-write filesystem to the container, as its final layer. This allows a running container to create or modify files and directories in its local filesystem.
  4. Docker creates a network interface to connect the container to the default network since you did not specify any networking options. This includes assigning an IP address to the container. By default, containers can connect to external networks using the host machine’s network connection.
  5. Docker starts the container and executes /bin/bash. Because the container is running interactively and attached to your terminal (due to the -i and -t flags), you can provide input using your keyboard while the output is logged to your terminal.
  6. When you type exit to terminate the /bin/bash command, the container stops but is not removed. You can start it again or remove it.

Conclusion

Obviously, Docker is important – and its prevalence in the job market is incredible. A recent search on LinkedIn revealed 28,941 jobs across the country are available. With cloud and Docker becoming more linked every day, that demand will only grow. Thus, you should know Docker to have a wonderful future in DevOps. 

Topic Related Post
DevOps Trends in 2024: The Continued Rise of GitOps, Data Observability, and Security
Building a High-Performing SRE Team: Key Strategies and Best Practices
Securing the Pipeline: Integrating Security into Your SRE Practices

About Author

NovelVista Learning Solutions is a professionally managed training organization with specialization in certification courses. The core management team consists of highly qualified professionals with vast industry experience. NovelVista is an Accredited Training Organization (ATO) to conduct all levels of ITIL Courses. We also conduct training on DevOps, AWS Solution Architect associate, Prince2, MSP, CSM, Cloud Computing, Apache Hadoop, Six Sigma, ISO 20000/27000 & Agile Methodologies.

Tags

 
 
SUBMIT ENQUIRY

* Your personal details are for internal use only and will remain confidential.

 
 
 
 
 
 
Upcoming Events
ITIL-Logo-BL ITIL

Every Weekend

AWS-Logo-BL AWS

Every Weekend

Dev-Ops-Logo-BL DevOps

Every Weekend

Prince2-Logo-BL PRINCE2

Every Weekend

Topic Related
Take Simple Quiz and Get Discount Upto 50%
Popular Certifications
AWS Solution Architect Associates
SIAM Professional Training & Certification
ITIL® 4 Foundation Certification
DevOps Foundation By DOI
Certified DevOps Developer
PRINCE2® Foundation & Practitioner
ITIL® 4 Managing Professional Course
Certified DevOps Engineer
DevOps Practitioner + Agile Scrum Master
ISO Lead Auditor Combo Certification
Microsoft Azure Administrator AZ-104
Digital Transformation Officer
Certified Full Stack Data Scientist
Microsoft Azure DevOps Engineer
OCM Foundation
SRE Practitioner
Professional Scrum Product Owner II (PSPO II) Certification
Certified Associate in Project Management (CAPM)
Practitioner Certified In Business Analysis
Certified Blockchain Professional Program
Certified Cyber Security Foundation
Post Graduate Program in Project Management
Certified Data Science Professional
Certified PMO Professional
AWS Certified Cloud Practitioner (CLF-C01)
Certified Scrum Product Owners
Professional Scrum Product Owner-II
Professional Scrum Product Owner (PSPO) Training-I
GSDC Agile Scrum Master
ITIL® 4 Certification Scheme
Agile Project Management
FinOps Certified Practitioner certification
ITSM Foundation: ISO/IEC 20000:2011
Certified Design Thinking Professional
Certified Data Science Professional Certification
Generative AI Certification
Generative AI in Software Development
Generative AI in Business
Generative AI in Cybersecurity
Generative AI for HR and L&D
Generative AI in Finance and Banking
Generative AI in Marketing
Generative AI in Retail
Generative AI in Risk & Compliance
ISO 27001 Certification & Training in the Philippines
Generative AI in Project Management
Prompt Engineering Certification
Devsecops Practitioner Certification
AIOPS Foundation Certification
ISO 9001:2015 Lead Auditor Training and Certification
ITIL4 Specialist Monitor Support and Fulfil Certification
Generative AI webinar
Leadership Excellence Webinar
Certificate Of Global Leadership Excellence
ISO 27701 Lead Auditor Certification
Gen AI for Project Management Webinar
Certified Cloud Tester Foundation
HR Business Partner Certification
Chief Learning Officer Certification
Gen AI in Cybersecurity Webinar
Six Sigma Webinar
Gen AI Powered ITSM Webinar
PM Prince2 PMP Webinar
Certified Generative AI Expert
GCP Professional Cloud Architect
GitHub Copilot Training Program
Certified Service Desk Professional
Certified Generative AI in ITSM
Recruitment & Sourcing